A mathematical model for the evaporation of a liquid fuel droplet, subject to nonlinear constraints
نویسندگان
چکیده
We study the mathematical evolution of a liquid fuel droplet inside a vessel. In particular, we analyze the evolution of the droplet radius on a finite time interval. The model problem involves an hyperbolic system coupled with the pressure and velocity of the surrounding gas. Existence of bounded solutions for the mass fraction of the liquid, submitted to nonlinear constraints, is shown. Numerical simulations are given, in agreement with known physical experiments.
منابع مشابه
Evaporation Characteristics of Diesel and Biodiesel Fuel Droplets on Hot Surfaces
In CI engines, the evaporation rate of fuel on various hot surfaces, including the combustion chamber, has a significant effect on deposit formation and accumulation, the exhaust emissions of PM and NOx, and their efficiency. Therefore, the evaporation of liquid fuel droplets impinging on hot surfaces has become an important subject of interest to engine designers, manufacturers, and researcher...
متن کاملPrediction of Physical Delay Period RiDirect Injection Diesel Engine Combustion
A semi-empirical mathematical model for predicting the physical part of ignition delay period in the combustion of diesel engines with swirl is developed. This model is based on a single droplet evaporation model. The governing equations, namely, equations of droplet motion, heat and mass transfer were solved simultaneously using a Runge-Kutta step by step method. The computation was executed u...
متن کاملComparative Analysis of a Single Fuel Droplet Evaporation
In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable propertie...
متن کاملSteady State Analysis of Nanofuel Droplet Evaporation
The potential for nanofuels as one of the clean sources of energy on account of its enhanced combustion performance coupled with low emissions has been established. Considering the importance of the fuel evaporation phase in the entire combustion process, this work presents an attempt at applying the steady state analysis equations to nanofuel experimental data obtained from the li...
متن کاملMulticomponent and High-Pressure Effects on Droplet Vaporization
This paper deals with the multicomponent nature of gas turbine fuels under high-pressure conditions. The study is motivated by the consideration that the droplet submodels that are currently employed in spray codes for predicting gas turbine combustor flows do not adequately incorporate the multicomponent fuel and high-pressure effects. The quasisteady multicomponent droplet model has been empl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 199 شماره
صفحات -
تاریخ انتشار 2008